Global optimization by continuous grasp

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global optimization by continuous grasp

We introduce a novel global optimizationmethod calledContinuous GRASP (C-GRASP) which extends Feo and Resende’s greedy randomized adaptive search procedure (GRASP) from the domain of discrete optimization to that of continuous global optimization. This stochastic local search method is simple to implement, is widely applicable, and does not make use of derivative information, thus making it a w...

متن کامل

Continuous GRASP with a local active-set method for bound-constrained global optimization

Global optimization seeks a minimum or maximum of a multimodal function over a discrete or continuous domain. In this paper, we propose a hybrid heuristic – based on the CGRASP and GENCAN methods – for finding approximate solutions for continuous global optimization problems subject to box constraints. Experimental results illustrate the relative effectiveness of CGRASP-GENCAN on a set of bench...

متن کامل

A Python/C library for bound-constrained global optimization with continuous GRASP

This paper describes libcgrpp, a GNU-style dynamic shared Python/C library of the continuous greedy randomized adaptive search procedure (C-GRASP) for bound constrained global optimization. C-GRASP is an extension of the GRASP metaheuristic (Feo and Resende, 1989). After a brief introduction to C-GRASP, we show how to download, install, configure, and use the library through an illustrative exa...

متن کامل

Ontologies for Continuous Global Optimization

Global Optimization tackles the problem of finding all feasible points of a set of constraints that optimize an objective function. In the following, we restrict our attention to Continuous Global Optimization, and more specifically to Global Optimization over interval domains [6, 9]. We believe that Software Design for Continuous Global Optimization has things in common with Astronomy of Sixte...

متن کامل

Learning Continuous Grasp Affordances by Sensorimotor Exploration

We develop means of learning and representing object grasp affordances probabilistically. By grasp affordance, we refer to an entity that is able to assess whether a given relative object-gripper configuration will yield a stable grasp. These affordances are represented with grasp densities, continuous probability density functions defined on the space of 3D positions and orientations. Grasp de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optimization Letters

سال: 2006

ISSN: 1862-4472,1862-4480

DOI: 10.1007/s11590-006-0021-6